<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=us-ascii"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
{font-family:"Microsoft YaHei Light";
panose-1:2 11 5 2 4 2 4 2 2 3;}
@font-face
{font-family:"\@Microsoft YaHei Light";}
@font-face
{font-family:"MS PGothic";
panose-1:2 11 6 0 7 2 5 8 2 4;}
@font-face
{font-family:"\@MS PGothic";}
@font-face
{font-family:Mallory;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
h1
{mso-style-priority:9;
mso-style-link:"Heading 1 Char";
mso-margin-top-alt:auto;
margin-right:0in;
mso-margin-bottom-alt:auto;
margin-left:0in;
font-size:24.0pt;
font-family:"Calibri",sans-serif;
font-weight:bold;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
span.EmailStyle17
{mso-style-type:personal-compose;
font-family:"Calibri",sans-serif;
color:windowtext;}
span.Heading1Char
{mso-style-name:"Heading 1 Char";
mso-style-priority:9;
mso-style-link:"Heading 1";
font-family:"Calibri",sans-serif;
font-weight:bold;}
span.odd
{mso-style-name:odd;}
span.date-display-single
{mso-style-name:date-display-single;}
span.date-display-range
{mso-style-name:date-display-range;}
span.date-display-start
{mso-style-name:date-display-start;}
span.date-display-end
{mso-style-name:date-display-end;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri",sans-serif;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
/* List Definitions */
@list l0
{mso-list-id:1055739835;
mso-list-template-ids:-348615884;}
@list l0:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l0:level2
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l0:level3
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l0:level4
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l0:level5
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l0:level6
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l0:level7
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l0:level8
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l0:level9
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
ol
{margin-bottom:0in;}
ul
{margin-bottom:0in;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1027" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link="#0563C1" vlink="#954F72" style='word-wrap:break-word'><div class=WordSection1><p class=MsoNormal style='background:white'><span style='color:#073763;mso-fareast-language:JA'><img width=115 height=37 style='width:1.1979in;height:.3854in' id="Picture_x0020_3" src="cid:image001.png@01D82C84.3335F8F0" alt="Department of Statistics and Data Science
"></span><span style='font-family:"Microsoft YaHei Light",sans-serif;color:#073763;mso-fareast-language:JA'> <a href="https://statistics.yale.edu/" target="_blank" title=Home><span style='font-size:22.0pt;color:#0563C1'>Department of Statistics and Data Science </span></a></span><i><span style='font-size:22.0pt;font-family:"Microsoft YaHei Light",sans-serif;color:#073763;mso-fareast-language:JA'> </span></i><span style='font-family:"Microsoft YaHei Light",sans-serif;mso-fareast-language:JA'><o:p></o:p></span></p><h1 style='mso-margin-top-alt:.1in;margin-right:0in;margin-bottom:0in;margin-left:0in;background:white'><span style='font-size:23.0pt;font-family:Mallory;color:black;text-transform:uppercase;font-weight:normal'>LIHUA LEI</span><span style='font-size:13.0pt;font-family:Mallory;color:black'>, </span><span class=odd><span style='font-size:13.0pt;font-family:Mallory;color:black'>Stanford University</span></span><span style='font-size:13.0pt;font-family:Mallory;font-weight:normal'><o:p></o:p></span></h1><p class=MsoNormal style='background:white'><!--[if gte vml 1]><v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f">
<v:stroke joinstyle="miter" />
<v:formulas>
<v:f eqn="if lineDrawn pixelLineWidth 0" />
<v:f eqn="sum @0 1 0" />
<v:f eqn="sum 0 0 @1" />
<v:f eqn="prod @2 1 2" />
<v:f eqn="prod @3 21600 pixelWidth" />
<v:f eqn="prod @3 21600 pixelHeight" />
<v:f eqn="sum @0 0 1" />
<v:f eqn="prod @6 1 2" />
<v:f eqn="prod @7 21600 pixelWidth" />
<v:f eqn="sum @8 21600 0" />
<v:f eqn="prod @7 21600 pixelHeight" />
<v:f eqn="sum @10 21600 0" />
</v:formulas>
<v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect" />
<o:lock v:ext="edit" aspectratio="t" />
</v:shapetype><v:shape id="Picture_x0020_3" o:spid="_x0000_s1026" type="#_x0000_t75" style='position:absolute;margin-left:0;margin-top:.35pt;width:80.65pt;height:96.75pt;z-index:251658240;visibility:visible;mso-wrap-style:square;mso-width-percent:0;mso-height-percent:0;mso-wrap-distance-left:9pt;mso-wrap-distance-top:0;mso-wrap-distance-right:9pt;mso-wrap-distance-bottom:0;mso-position-horizontal:absolute;mso-position-horizontal-relative:text;mso-position-vertical:absolute;mso-position-vertical-relative:text;mso-width-percent:0;mso-height-percent:0;mso-width-relative:page;mso-height-relative:page'>
<v:imagedata src="cid:image002.jpg@01D82C84.3335F8F0" o:title="" />
<w:wrap type="square"/>
</v:shape><![endif]--><![if !vml]><img width=108 height=129 style='width:1.125in;height:1.3437in' src="cid:image004.jpg@01D82C84.6A0A3A30" align=left hspace=12 v:shapes="Picture_x0020_3"><![endif]><span style='font-size:13.0pt;font-family:Mallory'><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span class=date-display-single><span style='font-size:13.5pt;font-family:Mallory;color:black'>Monday, February 28, 2022</span></span><span class=date-display-single><span style='font-size:13.5pt;font-family:Mallory'><o:p></o:p></span></span></p><p class=MsoNormal style='background:white'><span class=date-display-start><span style='font-size:13.5pt;font-family:Mallory;color:black'>4:00PM</span></span><span class=date-display-range><span style='font-size:13.5pt;font-family:Mallory;color:black'> to </span></span><span class=date-display-end><span style='font-size:13.5pt;font-family:Mallory;color:black'>5:00PM</span></span><span style='font-size:13.5pt;font-family:Mallory'><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:13.0pt;font-family:Mallory;color:#222222'>Via Zoom: <a href="https://yale.zoom.us/j/92599388925">https://yale.zoom.us/j/92599388925</a><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:13.0pt;font-family:Mallory;color:#222222'><a href="https://lihualei71.github.io/"><span style='font-size:12.0pt;color:#003C76'>Website</span></a><o:p></o:p></span></p><p class=MsoNormal style='background:white'><b><span style='font-size:15.0pt;font-family:Mallory;color:#222222'><o:p> </o:p></span></b></p><p class=MsoNormal style='background:white'><b><span style='font-size:15.0pt;font-family:Mallory;color:#222222'>Title: What Can Conformal Inference Offer To Statistics?<o:p></o:p></span></b></p><p class=MsoNormal style='background:white'><b><span style='font-size:13.0pt;font-family:Mallory;color:#222222'>Information and Abstract: <o:p></o:p></span></b></p><p style='mso-margin-top-alt:0in;margin-right:0in;margin-bottom:12.0pt;margin-left:0in;background:white;box-sizing: inherit'><span style='font-size:13.0pt;font-family:Mallory;color:#222222;background:white'>In this talk, I will describe how conformal inference can be adapted to handle more complicated inferential tasks in statistics. Valid </span><span style='font-size:13.0pt;font-family:Mallory;color:#222222'>uncertainty quantification is crucial for high-stakes decision-making. Conformal inference provides a powerful framework that can wrap around any black-box prediction algorithm, like random forests or deep neural networks, and generate prediction intervals with distribution-free coverage guarantees. In this talk, I will describe how conformal inference can be adapted to handle more complicated inferential tasks in statistics.<o:p></o:p></span></p><p style='mso-margin-top-alt:0in;margin-right:0in;margin-bottom:12.0pt;margin-left:0in;background:white;box-sizing: inherit'><span style='font-size:13.0pt;font-family:Mallory;color:#222222'>I will mainly focus on two important statistical problems: counterfactual inference and time-to-event analysis. In practice, the former can be used as a building block to infer individual treatment effects, and the latter can be applied for individual risk assessment. Unlike standard prediction problems, the predictive targets are only partially observable owing to selection and censoring. When the missing data mechanism is known, as in randomized experiments, our conformal inference-based approaches achieve desired coverage in finite samples without any assumption on the conditional distribution of the outcomes or the accuracy of the predictive algorithm; when the missing data mechanism is unknown, they satisfy a doubly robust guarantee of coverage. We demonstrate on both simulated and real datasets that conformal inference-based methods provide more reliable uncertainty quantification than other popular methods, which suffer from a substantial coverage deficit even in simple models. In addition, I will also briefly mention my work on adapting and generalizing conformal inference to other statistical problems, including election, outlier detection, and risk-calibrated predictions.<o:p></o:p></span></p><p class=MsoNormal><span style='mso-fareast-language:JA'><o:p> </o:p></span></p><p class=MsoNormal><o:p> </o:p></p></div></body></html>