<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta name=Generator content="Microsoft Word 15 (filtered medium)"><!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
        {font-family:"MS Gothic";
        panose-1:2 11 6 9 7 2 5 8 2 4;}
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:"Microsoft YaHei Light";
        panose-1:2 11 5 2 4 2 4 2 2 3;}
@font-face
        {font-family:"\@Microsoft YaHei Light";}
@font-face
        {font-family:"\@MS Gothic";
        panose-1:2 11 6 9 7 2 5 8 2 4;}
@font-face
        {font-family:"MS PGothic";
        panose-1:2 11 6 0 7 2 5 8 2 4;}
@font-face
        {font-family:"\@MS PGothic";}
@font-face
        {font-family:Mallory;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;
        mso-fareast-language:JA;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}
span.EmailStyle19
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;
        font-family:"Calibri",sans-serif;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1027" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link="#0563C1" vlink="#954F72" style='word-wrap:break-word'><div class=WordSection1><p class=MsoNormal style='background:white'><span style='color:#073763'><img width=115 height=37 style='width:1.1979in;height:.3854in' id="Picture_x0020_3" src="cid:image001.png@01D68A9D.C9993D50" alt="Department of Statistics and Data Science "></span><span style='color:#073763'>  </span><span style='color:black'><a href="https://statistics.yale.edu/" target="_blank" title=Home><span style='font-size:22.0pt;color:#0563C1'>Department of Statistics and Data Science </span></a></span><i><span style='font-size:22.0pt;color:#073763'> </span></i><o:p></o:p></p><p class=MsoNormal style='background:white'><span style='font-size:12.0pt'><o:p> </o:p></span></p><p class=MsoNormal style='background:white'><b><i><span style='font-size:12.0pt;color:black'>WEN SUN,  Cornell University</span></i></b><b><i><span style='font-size:12.0pt'><o:p></o:p></span></i></b></p><p class=MsoNormal style='background:white'><!--[if gte vml 1]><v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f">
<v:stroke joinstyle="miter" />
<v:formulas>
<v:f eqn="if lineDrawn pixelLineWidth 0" />
<v:f eqn="sum @0 1 0" />
<v:f eqn="sum 0 0 @1" />
<v:f eqn="prod @2 1 2" />
<v:f eqn="prod @3 21600 pixelWidth" />
<v:f eqn="prod @3 21600 pixelHeight" />
<v:f eqn="sum @0 0 1" />
<v:f eqn="prod @6 1 2" />
<v:f eqn="prod @7 21600 pixelWidth" />
<v:f eqn="sum @8 21600 0" />
<v:f eqn="prod @7 21600 pixelHeight" />
<v:f eqn="sum @10 21600 0" />
</v:formulas>
<v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect" />
<o:lock v:ext="edit" aspectratio="t" />
</v:shapetype><v:shape id="Picture_x0020_3" o:spid="_x0000_s1026" type="#_x0000_t75" style='position:absolute;margin-left:0;margin-top:0;width:66.25pt;height:79.5pt;z-index:-251658752;visibility:visible;mso-wrap-style:square;mso-width-percent:0;mso-height-percent:0;mso-wrap-distance-left:9pt;mso-wrap-distance-top:0;mso-wrap-distance-right:9pt;mso-wrap-distance-bottom:0;mso-position-horizontal:absolute;mso-position-horizontal-relative:text;mso-position-vertical:absolute;mso-position-vertical-relative:text;mso-width-percent:0;mso-height-percent:0;mso-width-relative:page;mso-height-relative:page'>
<v:imagedata src="cid:image004.jpg@01D8BC87.913C13B0" o:title="" />
<w:wrap type="tight"/>
</v:shape><![endif]--><![if !vml]><img width=88 height=106 style='width:.9166in;height:1.1041in' src="cid:image002.jpg@01D8C290.BE9785B0" align=left hspace=12 v:shapes="Picture_x0020_3"><![endif]><span style='font-size:12.0pt;color:black'>Date: Monday, Sept. 12, 2022</span><span style='font-size:12.0pt'><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:12.0pt;color:black'>Time: 4:00PM to 5:00PM</span><span style='font-size:12.0pt'><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:13.0pt;color:#222222'>Zoom:  </span><span style='color:black'><a href="https://yale.zoom.us/j/92411077917?pwd=aXhnTnFGRXFoaTVDczNjeFFKeWpTQT09"><span style='font-size:13.0pt;color:black'>https://yale.zoom.us/j/92411077917?pwd=aXhnTnFGRXFoaTVDczNjeFFKeWpTQT09</span></a></span><span style='font-size:13.0pt;color:#222222;mso-fareast-language:EN-US'>, </span><span style='font-size:13.0pt;color:#222222'>Password: 24</span><span style='font-size:13.0pt;color:#222222;mso-fareast-language:EN-US'><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:12.0pt'><o:p> </o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:12.0pt'><o:p> </o:p></span></p><p class=MsoNormal style='background:white'><b><span style='font-size:15.0pt;color:#222222;background:white'><o:p> </o:p></span></b></p><p class=MsoNormal style='background:white'><b><span style='font-size:14.0pt;color:#222222;background:white'>Title: Efficient Rich-observation Reinforcement Learning: A Representation Learning Approach<o:p></o:p></span></b></p><p class=MsoNormal style='background:white'><b><span style='font-size:15.0pt;color:#222222;background:white'><o:p> </o:p></span></b></p><p class=MsoNormal style='background:white'><b><span style='font-size:12.0pt;color:#222222'>Abstract</span></b><span style='font-size:12.0pt;color:#222222'>: </span><span style='font-size:13.0pt;color:#222222;mso-fareast-language:EN-US'>Representation learning is a promising approach for solving large-scale Reinforcement Learning (RL) problems where data is complex and high-dimensional (i.e., rich-observation RL). While representation learning in computer vision and natural language processing has made significant empirical progress, the understanding of its application to RL is still limited, due to the unique challenges from RL such as the interplay between representation learning and exploration (e.g., deep exploration requires informative representation which in turn cannot be easily discovered without adequate exploration). In this talk, we study representation learning for RL in the context of low-rank MDPs where features are unknown a priori, which forces us to think about the intricate coupling of representation learning and decision making. We develop two styles of representation learning methods, one is based on model learning, and the other one is based adversarial training. Both methods interleave representation learning, exploration, and exploitation to achieve polynomial sample complexity in learning near optimal policies. Empirically, we demonstrate our approach on a set of challenging rich observation RL benchmarks which require deep exploration, and show that our approach outperforms prior state-of-art theoretical approaches and also empirical deep RL baselines.<o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:13.0pt;color:#222222;mso-fareast-language:EN-US'><o:p> </o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:13.0pt;color:#222222;mso-fareast-language:EN-US'>This is joint work with Masa Uehara, Xuezhou Zhang, Yuda Song, Mengdi Wang, and Alekh Agarwal.<o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:13.0pt;color:#222222;mso-fareast-language:EN-US'><o:p> </o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:13.0pt;font-family:Mallory;color:#222222'>Via Zoom: Join from PC, Mac, Linux, iOS or Android: <a href="https://yale.zoom.us/j/92411077917?pwd=aXhnTnFGRXFoaTVDczNjeFFKeWpTQT09"><span style='color:#286DC0'>https://yale.zoom.us/j/92411077917?pwd=aXhnTnFGRXFoaTVDczNjeFFKeWpTQT09</span></a></span><span style='font-size:13.0pt;font-family:Mallory;color:#222222;mso-fareast-language:EN-US'><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:13.0pt;font-family:Mallory;color:#222222'>    Password: 24<o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:13.0pt;font-family:Mallory;color:#222222'>    Or Telephone</span><span lang=JA style='font-size:13.0pt;font-family:"MS Gothic";color:#222222'>:</span><span style='font-size:13.0pt;font-family:Mallory;color:#222222'>203-432-9666 (2-ZOOM if on-campus) or 646 568 7788<o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:13.0pt;font-family:Mallory;color:#222222'>    Meeting ID: 924 1107 7917<o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:13.0pt;font-family:Mallory;color:#222222'>    International numbers available: <a href="https://yale.zoom.us/u/ad1lmXjRIM"><span style='color:#286DC0'>https://yale.zoom.us/u/ad1lmXjRIM</span></a><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:13.0pt;font-family:Mallory;color:#222222'>For H.323 and SIP information for video conferencing units please click here: <a href="https://yale.service-now.com/it?id=support_article&sys_id=434b72d3db9e8fc83514b1c0ef961924"><span style='color:#286DC0'>https://yale.service-now.com/it?id=support_article&sys_id=434b72d3db9e8fc83514b1c0ef961924</span></a><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:12.0pt;color:#222222'><o:p> </o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:12.0pt;color:#222222'>3:45pm -4:00pm – meet and greet<o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:12.0pt;color:#222222'>4:00pm-5:00pm - Talk</span><span style='font-size:12.0pt'><o:p></o:p></span></p><p class=MsoNormal style='background:white;vertical-align:baseline'><span style='font-size:12.0pt;color:black'>For more details and upcoming events visit our website at </span><span style='color:black'><a href="http://statistics.yale.edu/" target="_blank"><span style='font-size:12.0pt;color:#0563C1'>http://statistics.yale.edu/</span></a></span><span style='font-size:12.0pt;color:black'> .</span><span style='font-size:12.0pt'><o:p></o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt'> <o:p></o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt'> <o:p></o:p></span></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal><o:p> </o:p></p></div></body></html>