<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=iso-2022-jp"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:"MS PGothic";
        panose-1:2 11 6 0 7 2 5 8 2 4;}
@font-face
        {font-family:"\@MS PGothic";}
@font-face
        {font-family:"Lucida Sans";
        panose-1:2 11 6 2 3 5 4 2 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;
        mso-fareast-language:JA;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}
span.date-display-single
        {mso-style-name:date-display-single;}
span.date-display-range
        {mso-style-name:date-display-range;}
span.date-display-start
        {mso-style-name:date-display-start;}
span.date-display-end
        {mso-style-name:date-display-end;}
span.fn
        {mso-style-name:fn;}
span.locality
        {mso-style-name:locality;}
span.region
        {mso-style-name:region;}
span.postal-code
        {mso-style-name:postal-code;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1027" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link="#0563C1" vlink="#954F72"><div class=WordSection1><p class=MsoNormal style='margin-bottom:12.0pt'><u><span style='font-size:14.0pt;color:red'>In-Person seminars will be held at Dunham Lab, 10 Hillhouse Ave., Room 220, with an option of remote participation via zoom.</span><o:p></o:p></u></p><p class=MsoNormal style='background:white'><span style='color:black'><a href="https://statistics.yale.edu/" title="Department of Statistics and Data Science "><span style='font-size:22.0pt;font-family:"Lucida Sans",sans-serif;color:#286DC0;text-decoration:none'><img border=0 width=150 height=49 style='width:1.5625in;height:.5069in' id=logo src="cid:image001.jpg@01D8BC86.EA2FA460" alt="Department of Statistics and Data Science "></span></a>   <a href="https://statistics.yale.edu/" title=Home><b><span style='font-size:22.0pt;font-family:"Lucida Sans",sans-serif;color:#286DC0'>Department of Statistics and Data Science </span></b></a></span><b><i><u><span style='font-size:22.0pt;font-family:"Lucida Sans",sans-serif;color:#286DC0'> <o:p></o:p></span></u></i></b></p><p class=MsoNormal style='margin-top:.1in'><span class=date-display-single><i><u><span style='font-size:16.0pt;font-family:"Arial",sans-serif'>We invite you to attend our in-person seminar.</span></u></i></span><span class=date-display-single><span style='font-size:13.0pt;font-family:"Arial",sans-serif;background:white'><o:p></o:p></span></span></p><p class=MsoNormal style='margin-top:.1in'><span style='font-size:16.0pt;font-family:"Arial",sans-serif;color:black;background:white'>Ahmed El Alaoui</span><span style='font-size:13.0pt;font-family:"Arial",sans-serif;color:black;background:white'>, Cornell University</span><o:p></o:p></p><p class=MsoNormal style='background:white'><span class=date-display-single><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></span></p><p class=MsoNormal style='background:white'><!--[if gte vml 1]><v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f">
<v:stroke joinstyle="miter" />
<v:formulas>
<v:f eqn="if lineDrawn pixelLineWidth 0" />
<v:f eqn="sum @0 1 0" />
<v:f eqn="sum 0 0 @1" />
<v:f eqn="prod @2 1 2" />
<v:f eqn="prod @3 21600 pixelWidth" />
<v:f eqn="prod @3 21600 pixelHeight" />
<v:f eqn="sum @0 0 1" />
<v:f eqn="prod @6 1 2" />
<v:f eqn="prod @7 21600 pixelWidth" />
<v:f eqn="sum @8 21600 0" />
<v:f eqn="prod @7 21600 pixelHeight" />
<v:f eqn="sum @10 21600 0" />
</v:formulas>
<v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect" />
<o:lock v:ext="edit" aspectratio="t" />
</v:shapetype><v:shape id="Picture_x0020_2" o:spid="_x0000_s1026" type="#_x0000_t75" style='position:absolute;margin-left:0;margin-top:151.65pt;width:101.85pt;height:122.25pt;z-index:251658240;visibility:visible;mso-wrap-style:square;mso-width-percent:0;mso-height-percent:0;mso-wrap-distance-left:9pt;mso-wrap-distance-top:0;mso-wrap-distance-right:9pt;mso-wrap-distance-bottom:0;mso-position-horizontal:left;mso-position-horizontal-relative:text;mso-position-vertical:absolute;mso-position-vertical-relative:text;mso-width-percent:0;mso-height-percent:0;mso-width-relative:page;mso-height-relative:page'>
<v:imagedata src="cid:image002.jpg@01D8BC86.EA2FA460" o:title="" />
<w:wrap type="square"/>
</v:shape><![endif]--><![if !vml]><img width=136 height=163 style='width:1.4166in;height:1.6944in' src="cid:image004.jpg@01D8C9BD.300908D0" align=left hspace=12 v:shapes="Picture_x0020_2"><![endif]><span class=date-display-single><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'>Monday, September 19, 2022</span></span><span class=date-display-single><span style='font-size:12.0pt'><o:p></o:p></span></span></p><p class=MsoNormal style='background:white'><span class=date-display-start><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'>4:00PM</span></span><span class=date-display-range><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'> to </span></span><span class=date-display-end><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'>5:00PM</span></span><o:p></o:p></p><p class=MsoNormal style='background:white'><span class=fn><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'>Dunham Lab.</span></span><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'> </span><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'>10 Hillhouse Avenue, Rm. 220</span><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span class=locality><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'>New Haven</span></span><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'>, <span class=region>CT</span> <span class=postal-code>06511</span></span><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span class=fn><b><i><span style='color:black'>OR</span><o:p></o:p></i></b></span></p><p class=MsoNormal style='background:white'><span class=fn><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'>Via Zoom:</span></span><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'> <a href="https://yale.zoom.us/j/92411077917?pwd=aXhnTnFGRXFoaTVDczNjeFFKeWpTQT09">https://yale.zoom.us/j/92411077917?pwd=aXhnTnFGRXFoaTVDczNjeFFKeWpTQT09</a>  / Password: 24</span><o:p></o:p></p><p class=MsoNormal style='background:white'><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'><a href="https://statistics.yale.edu/seminars/ahmed-el-alaoui">https://statistics.yale.edu/seminars/ahmed-el-alaoui</a></span><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></p><p class=MsoNormal style='background:white'><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:#222222'><o:p> </o:p></span></p><p class=MsoNormal style='background:white'><b><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:#222222'>Title: Sampling from the SK measure via algorithmic stochastic localization<o:p></o:p></span></b></p><p class=MsoNormal style='background:white'><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:#222222'><o:p> </o:p></span></p><p class=MsoNormal style='background:white'><b><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'>Information and Abstract: </span></b><b><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p></o:p></span></b></p><p style='margin:0in;background:white;box-sizing: inherit'><span style='font-family:"Arial",sans-serif;color:black'>The Sherrington-Kirkpatrick measure is a random probability distribution on the hypercube, which is a central object of study in probability theory and in the mean-field theory of disordered statistical physics models.  </span><span style='font-family:"Arial",sans-serif'><o:p></o:p></span></p><p style='margin:0in;background:white;box-sizing: inherit'><span style='font-family:"Arial",sans-serif'><o:p> </o:p></span></p><p style='margin:0in;background:white'><span style='font-family:"Arial",sans-serif;color:black'>In this talk I will present an algorithm which efficiently samples from the SK measure with no external field and at high temperature. The approach uses a discretized version of the stochastic localization process of Eldan, together with a subroutine for computing the mean vector, or magnetization, of a family of SK measures tilted by an appropriate external field. This approach is very general and has wide applicability.  </span><span style='font-family:"Arial",sans-serif'><o:p></o:p></span></p><p style='margin:0in;background:white;box-sizing: inherit'><span style='font-family:"Arial",sans-serif'><o:p> </o:p></span></p><p style='margin:0in;background:white'><span style='font-family:"Arial",sans-serif;color:black'>Our analysis shows that the algorithm outputs an approximate sample (in a certain weak sense) from the SK measure, for all inverse temperatures beta < 1/2. In a recent paper, Celentano (2022) shows that our algorithm succeeds up to the critical temperature beta < beta_c = 1.   </span><span style='font-family:"Arial",sans-serif'><o:p></o:p></span></p><p style='margin:0in;background:white'><span style='font-family:"Arial",sans-serif'><o:p> </o:p></span></p><p style='margin:0in;background:white'><span style='font-family:"Arial",sans-serif;color:black'>Conversely, we show that in the ‘low temperature’ phase beta >1, no ‘stable’ algorithm can approximately sample from the SK measure. This exploits a newly established strong version of a property called `disorder chaos’ exhibited by SK in this regime.  </span><span style='font-family:"Arial",sans-serif'><o:p></o:p></span></p><p style='margin:0in;background:white'><span style='font-family:"Arial",sans-serif'><o:p> </o:p></span></p><p style='margin:0in;background:white'><span style='font-family:"Arial",sans-serif;color:black'>The above two results settle the question of the computational tractability of sampling from SK for all temperatures except the critical one.     </span><span style='font-family:"Arial",sans-serif'><o:p></o:p></span></p><p style='margin:0in;background:white'><span style='font-family:"Arial",sans-serif'><o:p> </o:p></span></p><p style='margin:0in;background:white'><span style='font-family:"Arial",sans-serif;color:black'>This is based on a <a href="https://arxiv.org/abs/2203.05093"><span style='color:black;text-decoration:none'>joint work</span></a> with Andrea Montanari and Mark Sellke. </span><span style='font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal><i><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></i></p><p class=MsoNormal style='line-height:18.0pt;background:white'><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'><a href="x-apple-data-detectors://10/"><span style='color:black;text-decoration:none'>3:30pm</span></a> -   Pre-talk meet and greet.</span><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal><b><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></b></p><p class=MsoNormal><b><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>Zoom Link: </span></b><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>Via Zoom: Join from PC, Mac, Linux, iOS or Android: <a href="https://yale.zoom.us/j/92411077917?pwd=aXhnTnFGRXFoaTVDczNjeFFKeWpTQT09">https://yale.zoom.us/j/92411077917?pwd=aXhnTnFGRXFoaTVDczNjeFFKeWpTQT09</a> </span><span style='font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>    Password: 24<br>    Or Telephone</span><span lang=JA style='font-size:12.0pt;font-family:"MS PGothic",sans-serif'>:</span><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>203-432-9666 (2-ZOOM if on-campus) or 646 568 7788<br>    Meeting ID: 924 1107 7917</span><span style='font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal style='line-height:18.0pt;background:white'><o:p> </o:p></p><p class=MsoNormal style='background:white;vertical-align:baseline'><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'>For more details and upcoming events visit our website at <a href="http://statistics.yale.edu/"><span style='color:black'>http://statistics.yale.edu/</span></a> .</span><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt'><o:p> </o:p></span></p></div></body></html>