<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=iso-2022-jp"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
        {font-family:"MS Gothic";
        panose-1:2 11 6 9 7 2 5 8 2 4;}
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:YaleNew;}
@font-face
        {font-family:Mallory;}
@font-face
        {font-family:"\@MS Gothic";
        panose-1:2 11 6 9 7 2 5 8 2 4;}
@font-face
        {font-family:"Lucida Sans";
        panose-1:2 11 6 2 3 5 4 2 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;}
h1
        {mso-style-priority:9;
        mso-style-link:"Heading 1 Char";
        mso-margin-top-alt:auto;
        margin-right:0in;
        mso-margin-bottom-alt:auto;
        margin-left:0in;
        font-size:24.0pt;
        font-family:"Calibri",sans-serif;
        font-weight:bold;}
h2
        {mso-style-priority:9;
        mso-style-link:"Heading 2 Char";
        mso-margin-top-alt:auto;
        margin-right:0in;
        mso-margin-bottom-alt:auto;
        margin-left:0in;
        font-size:18.0pt;
        font-family:"Calibri",sans-serif;
        font-weight:bold;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
span.Heading1Char
        {mso-style-name:"Heading 1 Char";
        mso-style-priority:9;
        mso-style-link:"Heading 1";
        font-family:"Calibri",sans-serif;
        font-weight:bold;}
span.Heading2Char
        {mso-style-name:"Heading 2 Char";
        mso-style-priority:9;
        mso-style-link:"Heading 2";
        font-family:"Calibri",sans-serif;
        font-weight:bold;}
span.date-display-single
        {mso-style-name:date-display-single;}
span.date-display-range
        {mso-style-name:date-display-range;}
span.date-display-start
        {mso-style-name:date-display-start;}
span.date-display-end
        {mso-style-name:date-display-end;}
span.fn
        {mso-style-name:fn;}
span.map-icon
        {mso-style-name:map-icon;}
span.locality
        {mso-style-name:locality;}
span.region
        {mso-style-name:region;}
span.postal-code
        {mso-style-name:postal-code;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri",sans-serif;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1027" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link="#0563C1" vlink="#954F72"><div class=WordSection1><p class=MsoNormal style='background:white'><span style='color:black'><a href="https://statistics.yale.edu/" title="Department of Statistics and Data Science "><span style='font-size:22.0pt;font-family:"Lucida Sans",sans-serif;color:#286DC0;text-decoration:none'><img border=0 width=150 height=49 style='width:1.5625in;height:.5069in' id=logo src="cid:image001.jpg@01D90FB6.F86F79A0" alt="Department of Statistics and Data Science "></span></a>   <a href="https://statistics.yale.edu/" title=Home><b><span style='font-size:22.0pt;font-family:"Lucida Sans",sans-serif;color:#286DC0'>Department of Statistics and Data Science </span></b></a></span><b><i><u><span style='font-size:22.0pt;font-family:"Lucida Sans",sans-serif;color:#286DC0'> <o:p></o:p></span></u></i></b></p><p class=MsoNormal><i><span style='font-size:14.0pt'>In-Person seminars will be held at Dunham Lab, 10 Hillhouse Ave., Room 220, with an option of remote participation via zoom.</span></i><i><span style='font-size:14.0pt'><o:p></o:p></span></i></p><h1 style='margin:0in'><i><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black;font-weight:normal'><a href="x-apple-data-detectors://10/"><span style='color:black;text-decoration:none'>3:30pm</span></a> -   Pre-talk meet and greet, DL Suite 222, Room 228</span></i><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black;font-weight:normal'><o:p></o:p></span></h1><p class=MsoNormal><span class=date-display-single><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></span></p><p class=MsoNormal><span class=date-display-single><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>JIAOYANG HUANG, University of Pennsylvania</span></span><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal><!--[if gte vml 1]><v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f">
<v:stroke joinstyle="miter" />
<v:formulas>
<v:f eqn="if lineDrawn pixelLineWidth 0" />
<v:f eqn="sum @0 1 0" />
<v:f eqn="sum 0 0 @1" />
<v:f eqn="prod @2 1 2" />
<v:f eqn="prod @3 21600 pixelWidth" />
<v:f eqn="prod @3 21600 pixelHeight" />
<v:f eqn="sum @0 0 1" />
<v:f eqn="prod @6 1 2" />
<v:f eqn="prod @7 21600 pixelWidth" />
<v:f eqn="sum @8 21600 0" />
<v:f eqn="prod @7 21600 pixelHeight" />
<v:f eqn="sum @10 21600 0" />
</v:formulas>
<v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect" />
<o:lock v:ext="edit" aspectratio="t" />
</v:shapetype><v:shape id="Picture_x0020_3" o:spid="_x0000_s1026" type="#_x0000_t75" style='position:absolute;margin-left:0;margin-top:.3pt;width:101.25pt;height:121.5pt;z-index:251658240;visibility:visible;mso-wrap-style:square;mso-width-percent:0;mso-height-percent:0;mso-wrap-distance-left:9pt;mso-wrap-distance-top:0;mso-wrap-distance-right:9pt;mso-wrap-distance-bottom:0;mso-position-horizontal:absolute;mso-position-horizontal-relative:text;mso-position-vertical:absolute;mso-position-vertical-relative:text;mso-width-percent:0;mso-height-percent:0;mso-width-relative:page;mso-height-relative:page'>
<v:imagedata src="cid:image002.jpg@01D90FB6.F86F79A0" o:title="" />
<w:wrap type="square"/>
</v:shape><![endif]--><![if !vml]><img width=135 height=162 style='width:1.4027in;height:1.6875in' src="cid:image004.jpg@01D90FB9.2C843AD0" align=left hspace=12 v:shapes="Picture_x0020_3"><![endif]><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal><span class=date-display-single><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>Date: Monday, December 19, 2022<o:p></o:p></span></span></p><p class=MsoNormal><span class=date-display-single><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>Time: </span></span><span class=date-display-start><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>4:00PM</span></span><span class=date-display-range><span style='font-size:12.0pt;font-family:"Arial",sans-serif'> to </span></span><span class=date-display-end><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>5:00PM</span></span><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal><span class=fn><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>Location: Dunham Lab. </span></span><span class=map-icon><span style='font-size:12.0pt;font-family:"Arial",sans-serif;letter-spacing:.6pt'><a href="http://maps.google.com/?q=10+Hillhouse+Avenue%2C+Rm.+220%2C+New+Haven%2C+CT%2C+06511%2C+us"><span style='color:windowtext'>see map</span></a> </span></span><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>10 Hillhouse Avenue, Rm. 220<o:p></o:p></span></p><p class=MsoNormal><span class=locality><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>New Haven</span></span><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>, <span class=region>CT</span> <span class=postal-code>06511</span><o:p></o:p></span></p><p class=MsoNormal><a href="https://statistics.wharton.upenn.edu/profile/huangjy/"><span style='font-size:12.0pt;font-family:Mallory;color:#003C76;background:white;text-decoration:none'>Website</span></a> <span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p></o:p></span></p><p class=MsoNormal><b><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></b></p><p class=MsoNormal><b><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></b></p><p class=MsoNormal><b><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></b></p><p class=MsoNormal><b><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>Title: Efficient derivative-free Bayesian inference for large-scale inverse problems<o:p></o:p></span></b></p><p class=MsoNormal><b><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></b></p><p class=MsoNormal><b><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>Information and Abstract: <o:p></o:p></span></b></p><p style='mso-margin-top-alt:0in;margin-right:0in;margin-bottom:12.0pt;margin-left:0in;box-sizing: inherit'><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>We consider Bayesian inference for large-scale inverse problems, where computational challenges arise from the need for the repeated evaluations of an expensive forward model, which is often given as a black box or is impractical to differentiate. In this talk I will propose a new derivative-free algorithm Unscented Kalman Inversion, which utilizes the ideas from Kalman filter, to efficiently solve these inverse problems. First, I will explain some basics about Variational Inference under general metric tensors. In particular, under the Fisher-Rao metric, the Gaussian Variational Inference leads to the natural gradient descent. Next, I will discuss two different views of our algorithm. It can be obtained from a Gaussian approximation of the filtering distribution of a novel mean field dynamical system. And it can also be viewed as a derivative-free approximation of the natural gradient descent. I will also discuss theoretical properties for linear inverse problems. Finally, I will discuss an extension of our algorithm using Gaussian mixture approximation,  which leads to the Gaussian Mixture Kalman Inversion, an efficient derivative-free Bayesian inference approach capable of capturing multiple modes. I will demonstrate the effectiveness of this approach in several numerical experiments with multimodal posterior distributions, which typically converge within O(10) iterations. <o:p></o:p></span></p><p style='mso-margin-top-alt:0in;margin-right:0in;margin-bottom:12.0pt;margin-left:0in'><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>This is based on joint works with Yifan Chen, Daniel Zhengyu Huang, Sebastian Reich and Andrew Stuart.<o:p></o:p></span></p><p class=MsoNormal><em><b><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>Zoom Option: </span></b></em><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>Link: Join from PC, Mac, Linux, iOS or Android: <a href="https://yale.zoom.us/j/92411077917?"><span style='color:#286DC0'>https://yale.zoom.us/j/92411077917?</span></a>pwd=aXhnTnFGRXFoaTVDczNjeFFKeWpTQT09 <o:p></o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>Password: 24<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>Or Telephone</span><span style='font-size:12.0pt;font-family:"MS Gothic"'>:</span><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>203-432-9666 (2-ZOOM if on-campus) or 646 568 7788<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt;font-family:"Arial",sans-serif'>Meeting ID: 924 1107 7917<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt;font-family:"Arial",sans-serif'><o:p> </o:p></span></p><h2 style='margin:0in;box-sizing: inherit;font-feature-settings: "kern", "liga", "dlig"'><span style='font-family:YaleNew;font-weight:normal'>Department of Statistics and Data Science<o:p></o:p></span></h2><p style='margin:0in;box-sizing: inherit'><span style='font-size:9.0pt;color:black'>Yale University<br>24 Hillhouse Avenue<br>New Haven, CT 06511<o:p></o:p></span></p><p style='margin:0in;box-sizing: inherit'><span style='font-size:9.0pt;color:black'>t 203.432.0666<br>f 203.432.0633<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt;font-family:"Arial",sans-serif;color:black'>For more details and upcoming events visit our website at <a href="http://statistics.yale.edu/"><span style='color:black'>http://statistics.yale.edu/</span></a></span><o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p></div></body></html>