Coding as Practice

John Cayley

Brown University, Literary Arts

Abstract (responding to the ‘starting points’) :

I welcome this workshop's starting points, especially as cast in a framework of 'writing practices,' and yet I continue to question whether writing as such - creative writing, literary arts, writing (in) digital media, literature, the world of letters - has yet achieved, here and now, the implicit cultural and critical reconfiguration. If it had, I argue, it would be easier to conceive of coding as a distinct cultural practice, now necessarily and deeply implicated with certain writing practices but with its own properties and methods.
 In this context I hope to re-worry the ambiguities and misdirections associated with 'code,' and re-explore my anxieties over the hypostatizing denomination 'codework.'

WARNING: Writing in the package westernlogocentrism is deprecated.

Use, as examples of preferred practice, textuality.Writing and/or specific methods such as LiteraryObject.writing() from the textuality package.

When, in the introduction to this workshop’s ‘starting points,’ we read, “… both disciplines – creative writing and software engineering – are fundamentally writing practices,” a number of questions are begged.
 Of these, the most significant for my discussion is the question, ‘What is writing?’ The use of ‘writing practices’ in this context implies, for me, for us, a recasting of writing in the light of poststructuralist critical theory. In such light we may re-envision ‘writing’ as, for example, applied grammatology, or simply as an ever-shifting formation of cultural practices. These practices both produce and are constituted by acts of inscription which - in our current cultural moment - may be privileged as literal or literary, but may also nonetheless be manifest in other semiotic media without immediate linguistic embodiment, so long as their cultural action takes place in the realm of the symbolic where such action simultaneously defines and deconstructs all symbolic meaning-making. This is my own necessarily brief and simplified statement of a complex and difficult-to-characterize state of affairs. If this or a similar statement does, indeed, represent our understanding and practice of writing, then I, for one, will be happy to continue, to write, here, now, and in some necessarily reconfigured future.

However, I do not believe that the current understanding and practice of writing – to further simplify – has successfully reconfigured writing as practice, generally speaking, or even in the culture of the university, let alone predominant culture. The very invocation of ‘creative writing,’ begging another of those ‘what is … ?’ questions, is an indication that would tend to bolster my suspicions. And if writing-as-practice is not yet widely accepted then how can we be sure that coding is, fundamentally, writing? Or writing-as-practice? If we simply assert that coding is writing because it looks similar to writing, because its practices correspond and have corresponding cultural frameworks – this is the argument underlying the ‘starting points’ and its six ‘parallels’ – then this may very well be evidence that we should continue to revise our understanding of writing itself. But the argument is circular: ‘Coding is writing because it is practiced in a similar way as what we now recognize as writing because (Derrida and others have suggested that)
 coding is writing.’

I suggest we take a more direct, historical view of the matter: There has been writing. More recently, there has been coding. Coding looks somewhat like writing and this may alter our understanding of writing, which, by the way, has been experiencing an unprecedented and profound critical reexamination over many not-so-recent years. But in so far as coding is a new, or at least recently humanly-accessible, cultural practice, it may be worthwhile to consider it as such. Rather than attempt to assimilate coding to a writing that we do not yet practice with a full appreciation of its properties and methods, and rather than overly determine our reconfiguration of writing on the basis of coding (a novel cultural practice, after all), let us assume, for the time being, that writing and coding are distinct practices and explore them and their interrelations as such.

COMPILER ERROR: the deprecated object type CodeObject cannot be cast as an object of type TextObject or type LiteraryObject because it is not an extension of the currently referenced abstract class Text and does not fully implement the HumanRhetoric interface.

This inclination of discussion may recall, for some of you, my essay ‘The code is not the text (unless it is the text)’ and I do think that these present thoughts and some of those represented in the earlier essay share a drift.
 Here I want only to reiterate that I am, emphatically, not suggesting that our chief focus of interest - when our subject is work that is both written and coded - should be an address to some set of distinct ‘texts-of-literature’ or ‘texts-of-code’ that are analytically distinguished and symbolically or interpretatively protected from one another. Critical attention to such work is entirely at liberty to explore every aspect of writing digital media. Everything that is made manifest and available by the work is subject to commentary. My point is that, while they may both be manifest as ‘texts,’ texts of writing and those of coding are the distinct products of distinct practices. In the earlier essay, one of the things that I believe I am trying to say is that, as a function of the properties and methods of the media - of both ‘wet’ and ‘dry’ systems that compose and deliver the varieties of codework - a (wet) human reader cannot address anything other than a representation of the code as it runs, during the time, that is, when the code addresses the (dry) machine. A representation of code is intended to be humanly legible. In so far as it is not legible, its is runnable; it is code, not its representation.
 Correspondingly (and the relationship is not symmetrical or rather is only indicatively so): A representation of writing is not legible. If it were legible it would be writing, not its representation.

If we insist on conceiving of coding as a kind of writing – in the fundamentally reconfigured sense that we have learned from poststructuralism – the only coherent and culturally productive way to do so is, to my mind, by taking seriously the address of coding to the machine and so to the potential emergence of machinic culture.
 By this I mean that if coding - rather than being a merely functional symbolic sub-activity - is a full-blown cultural activity like writing, then it is, at this present historical moment, writing by humans for machinic culture. The questions become not: Is coding writing or is writing coding? But: In what way does human culture relate to the culture of machines? Can we find - assuming aesthetic underpinning for our projects, here, in the context of this workshop - significant, affective, and, in short, art-productive ways by which human culture and machinic culture can interrelate and collaborate? Will some attention to practices of writing and of coding, which we distinguish according to their cultural address - demonstrate precisely such effective interrelations?

import writing.textuality.*;

import litcrit.postmodernism.CloseReading;

public class CriticalCodeStudies extends CloseReading {

 // must code this before the next ‘hermeneutics’ build

 // or perhaps CCS should be in the culturalstudies

 // package as a subclass of SoftwareStudies?

 // where Foucault’s Chinese Encyclopedia

 // when you need it? RTFM.

}

Assuming the above point of view clearly has consequences that I will touch on briefly, firstly, for the methods of our continuing critical study of writing digital media (my own broad designation of our field) and, secondly, for our critical understanding of ‘codework,’ basing our usage on Alan Sondheim’s introduction and elaboration of the term.

The general point I wish to make concerning the critical study of writing digital media is basically a point of persuasion, to try and convince you that there is no critical harm or ‘loss of cachet’ or ‘special insight’ in treating coding as a distinct practice. I am not saying that writers don’t or can’t code or that they will not code; nor am I denying that more and more of them are, as a matter of some certainty, coding every day. Nor am I saying that coders don’t or can’t write. And I am saying, emphatically, that we must take account of the fact that artists do undertake both types of practice, ever-increasingly during the production, often, of one and the same project. And so, I am clearly not saying the if you both code and write the two practices do not or can not have an influence on one another. But, as critical code studies, and software studies emerge, I maintain that they will have to resist what may seem to be urges of pseudo-insight generated by suggestive but misleading correspondences between coding and writing, because these will prove to be reductive urges, or a best attempts to enhance either writing or coding with certain properties and methods of the other distinct practice. Moreover, there is the risk, hinted at above in my initial remarks that, when, for example, applying what I am claiming is a reductive analysis to coding by assimilating it to writing, that rather than reconfiguring our class, writing, we will be applying legacy properties and methods to coding, typically treating its objects as texts, editions, (potentially) canonical exemplar, or (at best) disruptive intervention into some established world of letters and the literary. (I realize that our critical community is, thankfully, as it happens, quite well protected against such risks.)

It seems preferable to me that, for example, critical code studies or analysis in terms of ‘expressive processing’ (to use the phrase promoted by Noah Wardrip-Fruin)
 improves our (close) reading of literary objects (including those currently designated as codework) simply by drawing attention to the procedures of coding that are involved in the object’s composition and delivery, as an extension of media specific analysis that, precisely, engages with coding as cultural practice, bringing to bear, amongst other things, the whole culture of computing and computer science in so far as this has critical traction for the piece addressed. There is no need, in such a critical process, for coding to be assimilated to writing in order for our readings to be enriched, and there is, to my mind, no benefit either in terms of, for example, some desire for progressivist polemic. What is aesthetically progressive about the implicit reduction?

As for software studies, in so far as this emerging field addresses the aesthetic domain, I take it to refer to a whole potential category of art-making and its objects that may or may not have any literary content to speak of. Here, it is less likely or desirable, in the short term, that either critics or artists will attempt, explicitly or implicitly, to reduce coding to a type of writing. Which rather bolsters my case since, if coding is writing, then writing overwhelms yet more aesthetic territory where it may or may not be welcome.

WARNING: the class Codework refers to libraries

that are unsupported and cannot be loaded.

Suppress warnings & continue this build anyway? (Y/N) ...

So finally, a few remarks on the consequences for ‘codework.’ In my reading. codework is a mode of writing, a particular practice of writing, an écriture in Barthes’ acute not to say prescient sense.
 While Alan Sondheim’s original and subsequent recent specifications (Sondheim makes a virtue of the avoidance of definition) are cannier and far less constrained on the basis of media or notions of art-genre,
 most of the subsequent paraphrases of the term in our field place it well within what could always already be recognized as writing, more or less ‘avant-garde’ or experimental writing, but writing for which coding itself is not necessarily engaged in order to produce the codework.
 Netwurker mez’s mezangelle, for example, is not usually and need never be the product of algorithmic processes.
 ‘She’ ‘composes’ ‘her’ ‘texts,’ where my scare quotes here ask that this statement be read in two ways: as a simple statement with an obvious interpretation in terms of conventional textuality, and while simultaneously recognizing that mez’s texts (her codeworks) do entail an intention to bring each and, perhaps, every token of symbolic interaction into some form of address with its own cultural-critical problematic.
 My point here is that practices of coding itself are not - for mez’s work and not, generally speaking, for most of what we (here, in this field) designate as codework - anything more than a context for literary poeisis, a context for literal art. The coding is not the text.

Now, at this point, if not long before, since this writing is addressed to a meeting where Alan Sondheim is very much present, he will leap into the discussion to point out that, for him, code and coding are inseparable from one another and from other inscriptional poetic practices throughout all aspects and potentials of the artifactual whether they be social, political, sexual, psychosexual, psychogeographic, literary, visual, second-livable, psychotically knotted, sinthomatic or whatever. Codework is an important way into engagements that contemporary artists must not avoid, especially in a world where artifacts that are explicitly coded proliferate all around and all through us. I suspect that, for Sondheim, the relationships between codework and writing are not as important as the range of practices in which he engages. And this is my point. Sondheim conceived of himself as a writer before he was a codeworker and as a writer he was already doing ‘codework’ in his own sense of this term, which is a stronger, more culturally critical sense than it is for those critics and artists who read is as a practice ‘like writing’ or a practice ‘of writing.’ Writing was always already codework in this sense, avant la lettre, for Sondheim and certain others.

In brief summary, codework may be writing, but only in so far as writing was always already codework. To give it a name may help us to bring together a type of artwork with certain recognizable properties and methods but, in so far as we retain a notion of writing that is traditionally constrained, we risk both hypostatizing codework and constraining it to a superclass of (traditional) ‘writing.’ To do so will not help us to see clearly that we must also now confront our still nascent understanding of what is, historically, a novel cultural practice, one that will continue to interact both with writing and what we call codework. We may designate this novel cultural practice ‘coding’ and hope, through its practice, to discover links to a culture of the machine, a culture that is either still little known to us, or, if we are machines, at once too well and too little known.

References

Barthes, Roland. Writing Degree Zero. 1953. Trans. Annette Lavers and Colin Smith. New York: Hill and Wang, 1977.

Bootz, Philippe. "The Problem of Form: Transitoire Observable, a Laboratory for Emergent Programmed Art." The Aesthetics of Net Literature: Writing, Reading and Playing in Programmable Media. Eds. Peter Gendolla and Jörgen Schäfer. Media Upheavals. Bielefeld: Transcript, 2007. 89-103.

Cayley, John. "The Code Is Not the Text (Unless It Is the Text)." Electronic Book Review (2002): [website, http://www.electronicbookreview.com/thread/electropoetics/literal].

Derrida, Jacques. Of Grammatology. 1967, First American edition, 1976. Trans. Gayatri Chakravorty Spivak. Corrected ed. Baltimore and London: Johns Hopkins University Press, 1997.

Funkhouser, Christopher T. "Le(s) Mange Texte(s): Creative Cannibalism and Digital Poetry." E-Poetry 2007. Paris: Université Paris8, 2007. [website, http://www.epoetry2007.net/english/papers/funkhouseruk.pdf].

Harrist Jr., Robert E. "Book from the Sky at Princeton: Reflections on Scale, Sense, and Sound." Persistence | Transformation: Text as Image in the Art of Xu Bing. Eds. Jerome Silbergeld and Dora C. Y. Ching. Princeton: P. Y. and Kinmay W. Tang Center for East Asian Art, 2006. 25-45.

Hayles, N. Katherine. "Distributed Cognition in/at Work: Strickland, Lawson Jaramillo, and Ryan's slippingglimpse." Frame 21.3 (2008): 15-19 [website, http://www.let.uu.nl/alw/frame/en/index.shtml].

---. Electronic Literature: New Horizons for the Literary. Ward-Phillips Lectures in English Language and Literature. Notre Dame: University of Notre Dame, 2008.

---. "Electronic Literature: What Is It?" Electronic Literature Organization: PAD (2007): [website, http://eliterature.org/pad/elp.hml].

Memmott, Talan. "E_Rupture://Codework"."Serration in Electronic Literature." American Book Review 22.6 (2001): 1, 6.

Raley, Rita. "Interferences: [Net.Writing] and the Practice of Codework." Electronic Book Review (2002): [website, http://www.electronicbookreview.com/thread/electropoetics/net.writing].

Simanowski, Roberto. Reading Digital Arts: In-Depth Analysis and Historical Contextualization. 2008 forthcoming.

Sondheim, Alan. "Introduction: Codework." American Book Review 22.6 (2001): 1, 4.

� Please note that, in these brief remarks, I am entirely discounting and bracketing the misdirections and confusions that continue to arise as a consequence of relating code and encoding, to the practices of coding and programming. I take it that our address is primarily to the latter more significant cultural configurations, cast here in terms of writing-as-practice.

� These were set out by Sandy Baldwin at <http://clc.as.wvu.edu:8080/clc/CodeworkWorkshopWiki>.

� “And, finally, whether it has essential limits or not, the entire field covered by the cybernetic program will be the field of writing.” Jacques Derrida, Of Grammatology, trans. Gayatri Chakravorty Spivak, Corrected ed. (Baltimore and London: Johns Hopkins University Press, 1997).

� John Cayley, "The Code Is Not the Text (Unless It Is the Text)," Electronic Book Review (2002).

� A good demonstration of these relationships is provided by W. Bradford Paley’s ‘Code Profiles,’ commissioned for the Whitney Museum of Art show, CODeDOC <http://artport.whitney.org/commissions/codedoc/index.shtml>, September, 2002. The reader can view this piece from a number of points of view: its introductory description <http://artport.whitney.org/commissions/codedoc/paley.shtml>; the code itself (although this is also a representation of code in my sense) <http://artport.whitney.org/commissions/codedoc/Paley/code.html>; and by observing the code run in a manner that is expressly intended to represent simultaneously both code and its resulting active, durational performance. This is, clearly, still a representation but it does present itself, self-consciously, self-reflexively, as code <http://artport.whitney.org/commissions/codedoc/Paley/CodeProfiles_800x600.htm>. Note that in this final representation, the text of code is scaled to fit within an 800x600 pixel frame and that is why it is no longer legible as code, not because it has been transformed into a graphic. Nonetheless, it is interesting to note that this code-as-text or writing because it is too small to read becomes (also) a representation of writing rather than writing itself (which it would be if it were large enough for humans to read).

 The theory and practice of Philippe Bootz provides us with an introduction to engaging complexities arising from the properties and methods of programmed artifacts although what he puts forward is not, I believe, in contradiction with my view of the related matters set out here. For example, in his presentation to the same workshop where this paper was also given, Bootz pointed out that a programmed work of writing in digital media might well contain texts (which term is taken here to include semiotic elements in media other than strictly linguistic media) that are human-legible but which need not have human readers, other than the work’s author, since they are buried in the code and are, typically, used to render (more or less indirectly) what Bootz calls the ‘texte-à-voir’ (‘text-to-be-seen,’ the surface or interface text in my own terms). These elements would be part of Bootz’s ‘texte-auteur’ (the text which is accessible and legible to the author but not necessarily to the reader). There can, clearly, be many types of semiotic elements in the ‘texte-auteur,’ all of which must be, at least in some way, legible to the author by definition. However, if these elements are deeply, literally, symbolically implicated with coding as well as being invisible to potential readers of the ‘texte-à-voir,’ then they give rise to a number of interesting complications and phenomena for us to consider. Bootz gave us two examples. One work he cited as containing a digitized image, the code-analyzed features of which were used to generated semiotic behavior in the human-legible final piece - in its texte-à-voir - although the image itself is never presented to be read as such. In another work of his, the coding is composed in what Bootz calls ‘braids’ (French: ‘tresses’) that each would render a texte-à-voir if run separately although this is not the author’s intention. The braids are designed to run together and so obscure one another as distinct ‘texts’ (through interaction or literal, visual occlusion).

 If we treat these phenomena as a function of their media, part of the modality of writing and coding in digital media, then there are some rather strange critical consequences. Roberto Simanowski, in his forthcoming book (Roberto Simanowski, Reading Digital Arts: In-Depth Analysis and Historical Contextualization (2008 forthcoming), remarks on the tendency of digital works to consume their own texts by obscuring them or rendering them less legible or even illegible in the face of other aesthetic modalities, strategies of reading, or instrumental engagements with the work. Simanowski suggests that this might be seen in terms of a literary ‘cannibalism,’ adapting this term from Christopher Funkhouser’s usage in a presentation to the E-Poetry 2007 conference. Christopher T. Funkhouser, "Le(s) Mange Texte(s): Creative Cannibalism and Digital Poetry," E-Poetry 2007 (Paris: Université Paris8, 2007). He also relates this phenomemon to what he sees as a ‘death of the reader’ which is, he suggests, as useful a critical concept as that associated with any ‘death of the author,’ when we address ourselves to digital art. At the Codework workshop, Philippe Bootz pointed to another paradoxical consequence. Much is often made of the fact that executable work risks obsolescence, as ‘platforms’ for the execution of coded artifacts develop and evolve. It may be that this obsolescence is inevitable, given the properties of digital media. Strangely, this may mean that the although the code of a piece has become broken, unrunnable, unable to generate its interface text or ‘texte-à-voir,’ if it nonetheless contains other code- or data-inscribed objects buried within it - in structures such as those outlined by Bootz, which are human-readable but never read - then these elements and whatever effects they may have - critically or in terms of significance and affect - will survive the demise of the code. They may still be recoverable and readable, to humans at least. For Bootz this becomes an aspect of the specificity of the aesthetics of programmed artifacts. He has done much to try and identify these aesthetic specificities and views them as arising from the particular characteristics of their form and composition, such that they generate, ‘not an aesthetics of text’ but ‘an aesthetics of creating.’ Philippe Bootz, "The Problem of Form: Transitoire Observable, a Laboratory for Emergent Programmed Art," The Aesthetics of Net Literature: Writing, Reading and Playing in Programmable Media, eds. Peter Gendolla and Jörgen Schäfer, Media Upheavals (Bielefeld: Transcript, 2007). This article is the most complete recent exposition of Bootz’s theory in English.

 For my own thinking (without being able to take these thoughts any further here), the hidden compositional structures to which Bootz calls our attention help me to work towards something I have always found lacking in the discourses of digital and new media: the problem of ithe (non-)representation of some form of unconscious in these media, some way in which it would be possible for us to engage with the unrepresentable and the inaccessible. Bootz’s ‘hidden’ compositional elements also suggest important dimensions of a work’s body-as-such, organs of the work that are simply an aspect of its embodiment, and not necessarily, for example, interpretable, transparent, or subject to paraphrase.

� This ‘curious phenomenon’ of writing, a function of symbolic abstraction, was brought home to me in conversation once with Robert Harrist, and he cites it in a discussion of language art work by Xu Bing, work which puts our own efforts at paratextual programming (if that is, at least partly, what we are attempting) in interesting perspectives. See: Robert E. Harrist Jr., "Book from the Sky at Princeton: Reflections on Scale, Sense, and Sound," Persistence | Transformation: Text as Image in the Art of Xu Bing, eds. Jerome Silbergeld and Dora C. Y. Ching (Princeton: P. Y. and Kinmay W. Tang Center for East Asian Art, 2006).

� In recent essays, N. Katherine Hayles attributes a delineated form of machinic ‘cognition’ to certain processes and sub-processes within, chiefly, the dynamically reconfigured presentation of some literary work, especially Slippingglimpse by Stephanie Strickland, Cynthia Lawson Jaramillo, and Paul Ryan <http://slippingglimpse.org>. This is an example of a movement of criticism following a vector out of tradition English literary studies towards one in which coding may begin to be recognized not only as a cultural practice but as a transcultural practice. Cf. Hayles’ close reading of Slippingglimpse for the conference ‘Reading Digital Literature,’ Brown University, Providence, Rhode Island, USA, October 4-7, 2007 (forthcoming as: N. Katherine Hayles, "Distributed Cognition in/at Work: Strickland, Lawson Jaramillo, and Ryan's slippingglimpse," Frame 21.3 (2008); and her keynote presentation, ‘Intermediation: a theoretical framework for code and electronic literature,’ at the SLSA 2007 Conference on ‘Code,’ Portland, Maine, USA, November 1-4, 2007.

� See notes below for references.

� Noah Wardrip-Fruin’s forthcoming book on expressive processing is, at the time of writing (March 2008) being openly peer-reviewed on the blog, Grand Text Auto <http://grandtextauto.org/category/expressive-processing/>.

� Although please note that, basically, I agree with the Derridean notion that writing configures, for the present cultural moment, the entire realm of symbolic practice.

� Roland Barthes, Writing Degree Zero, trans. Annette Lavers and Colin Smith (New York: Hill and Wang, 1977). And see Susan Sontag’s preface, pp. xiii-xiv, in this edition, which suggests a close correlation between Barthes’ term and the contemporary sense of writing practices, even as they are now influenced by later poststructuralist readings.

� The locus classicus for ‘codework’ seems to be the issue of the American Book Review that Sondheim edited, especially, his introduction: Alan Sondheim, "Introduction: Codework," American Book Review 22.6 (2001). There are also important statements by Talan Memmott and McKenzie Wark in this issue. On the Center for Literary Computing website at WVU, <http://clc.as.wvu.edu:8080/clc/projects/plaintext_tools/WhatIsCodeworkAlanSondheim>, there is an essential short text by Sondheim entitled ‘What is codework?’ This was noted as “last edited 1 year ago by sbaldwin” on March 27, 2008 and so was probably posted March 2007. The text is also on one of Sondheim’s personal sites at <http://www.alansondheim.org/whatiscodework.txt>.

� See, for example, Talan Memmott, "E_Rupture://Codework"."Serration in Electronic Literature," American Book Review 22.6 (2001). “One could say [codework] is a form of electronic literary work in which the protocols and structural aspects of the supporting technology, from which, to which the work is applied are explored and exposed within the body of the text.” Rita Raley, "Interferences: [Net.Writing] and the Practice of Codework," Electronic Book Review (2002). “Codework refers to the use of the contemporary idiolect of the computer and computing processes in digital media experimental writing, or [net.writing]. ... The precise techniques vary, but the general result is a text-object or a text-event that emphasizes its own programming, mechanism, and materiality. ... Broadly, codework makes exterior the interior workings of the computer. One formal purpose is to bring the function and code of the computer to a kind of visibility. That is, to illuminate the many layers of code - the tower of programming languages that underlies the representation of natural languages on the screen. For all of the differences among particular instances or events of codework, they all incorporate elements of code, whether executable or not. Code appears in the text, then, in whole or in part, in the form of a functioning script, an operator, and/or a static symbol.” N. Katherine Hayles, "Electronic Literature: What Is It?," Electronic Literature Organization: PAD (2007), now also published in N. Katherine Hayles, Electronic Literature: New Horizons for the Literary, Ward-Phillips Lectures in English Language and Literature (Notre Dame: University of Notre Dame, 2008) 20-21. “’Code work,’ [sic] ... names a linguistic practice in which English (or some other natural language) is hybridized with programming expressions to create a creole evocative for human readers, especially those familiar with the denotations of programming languages. ‘Code work’ in its purest form is machine-readable and executable, such as Perl poems that literally have two addressees, humans and intelligent machines. More typical are creoles using ‘broken code,’ code that cannot actually be executed but that uses programming punctuation and expressions to evoke connotations appropriate to the linguistic signifiers.” Memmott gives (as they all do, actually) a useful but relatively literary outline of the term. Hayles, assumes some sort of explicit relationship, including that of dysfunction with runnable code, but her supposition that this code work only runs in its ‘purest form,’ seems misdirected in light of the actual practices of various artists, including those that produce or are interested in software art. The fork bombs cited as codework by, for example, Florian Cramer are not Perl poetry, but they are as close to ‘pure code’ as we will get. I also question Hayles’ designation of codework as a ‘creole.’ I realize her usage is metaphoric but, as I’ve pointed out before (in Cayley, "The Code Is Not the Text."), it is misdirected since it gives the impression that it might somehow be commensurate with human languages as such, rather than being a cultural formation within (specific) languages.

� Mezangelle now has a wikipedia article <http://en.wikipedia.org/wiki/Mezangelle> which includes some useful ‘codework’ references and links.

� For the moment, I’m leaving out of account the possibility of seeing punctuation and other micro-paratextual or proto-semantic language practices as, genuinely, practices of coding or programming in that they address the media of language rather than or as well as the human interpreter of that language.

