1 From Part 1: Markov chain X_{0}, X_{1}, \ldots on a finite state space \mathcal{V} (of size N), transition probabilities $P(x, y)$. Assume irreducible, aperiodic and time reversible: $\pi(x) P(x, y)=\pi(y) P(y, x)$, with π the stationary distribution. Inner product $\langle f, g\rangle_{\boldsymbol{\pi}}=\sum_{x \in \mathcal{V}} f(x) \pi(x) g(x)$. Time reversible implies self-adjoint: $\langle f, P g\rangle_{\boldsymbol{\pi}}=\langle P f, g\rangle_{\boldsymbol{\pi}}$. Spectrum of P :

$$
\lambda_{1}=1>\lambda_{2}=1-\gamma \geq \cdots \geq \lambda_{N}>-1 .
$$

$2 \quad$ Given $f: \mathcal{V} \rightarrow \mathbb{R}$ with $\max _{x \in \mathcal{V}}|f(x)| \leq 1$ and $\sum_{x \in \mathcal{V}} \pi(x) f(x)=0$ and $\sum_{x \in \mathcal{V}} \pi(x) f(x)^{2} \leq \sigma^{2}$. Seek concentration of $t_{n}(f)=f\left(X_{1}\right)+\cdots+f\left(X_{n}\right)$ under \mathbb{P}_{π}. Claim:

$$
\mathbb{P}_{\pi} e^{\theta t_{n}(f)} \leq \text { const } \times \exp \left(\frac{W \theta^{2}}{2(1-B \theta)}\right) \quad \text { for } 0 \leq \theta<1 / B
$$

where $W=C n \sigma^{2} / \gamma$ and $B=5 / \gamma$, leading to tail bound

$$
\mathbb{P}_{\pi}\left\{t_{n}(f) \geq r\right\} \leq \text { const } \times \exp \left(-\frac{\gamma r^{2} / 2}{C n \sigma^{2}+5 r}\right) \quad \text { for } r \geq 0
$$

3 Matrix notation.

$$
\begin{aligned}
& \pi \text { an } N \times 1 \text { column vector; } \quad \Pi=\operatorname{diag}(\pi) \text { an } N \times N \text { matrix } \\
& P \text { an } N \times N \text { matrix with } \pi^{\top} P=\pi^{\top} \operatorname{and} P \mathbb{1}=\mathbb{1} \\
& f \text { an } N \times 1 \text { column vector; } \quad F=\operatorname{diag}(f) \text { an } N \times N \text { matrix } \\
& P_{\theta}=P e^{\theta F} \text { and } T_{\theta}=e^{\theta F / 2} P e^{\theta F / 2}
\end{aligned}
$$

Note $\langle g, h\rangle_{\boldsymbol{\pi}}=g^{\top} \Pi h$ and $\pi^{\top} h=\mathbb{1}^{\top} \Pi h=\langle\mathbb{1}, h\rangle_{\boldsymbol{\pi}}$. Claim: $e^{-\theta F / 2}$ and T_{θ} are self-adjoint and

$$
\begin{aligned}
\mathbb{P}_{\pi} e^{\theta t_{n}(f)} & =\pi^{\top} P e^{\theta F} \ldots P e^{\theta F} P e^{\theta f}=\pi^{\top} P_{\theta}^{n} \mathbb{1} \\
& =\pi^{\top} e^{-\theta F / 2} T_{\theta}^{n} e^{\theta F / 2} \mathbb{1} \\
& =\left\langle\mathbb{1}, e^{-\theta F / 2} T_{\theta}^{n} e^{\theta f / 2}\right\rangle_{\pi}=\left\langle e^{-\theta f / 2}, T_{\theta}^{n} e^{\theta f / 2}\right\rangle_{\pi} \\
& \leq\left\|e^{-\theta f / 2}\right\|_{\pi}\left\|\mid T_{\theta}\right\|_{\pi}^{n}\left\|e^{\theta f / 2}\right\|_{\boldsymbol{\pi}} \quad \text { where }\|\cdot\|_{\pi} \text { is operator norm } \\
& \leq e^{\theta} \lambda_{1}(\theta)^{n} \quad \text { where } \lambda_{1}(\theta) \text { is largest eigenvalue of } T_{\theta} .
\end{aligned}
$$

The power could be reduced to $n-1$ by a slightly trickier argument.
4 Part 2: Complex analysis facts. If $\psi: G \rightarrow \mathbb{C}$ is holomorphic on a convex, open subset G of \mathbb{C} and Γ is a closed path lying inside G then $\oint_{\Gamma} \psi(z) d z=0$.

As a consequence: If $\Gamma_{1}(t)=1+\rho e^{i t}$
and $\Gamma_{2}(t)=\zeta+\delta e^{i t}$ for $0 \leq t \leq 2 \pi$ with $|\zeta-1|<\rho-\delta$ then

$$
\oint_{\Gamma_{1}} \frac{1}{z-\zeta} d z=\oint_{\Gamma_{2}} \frac{1}{z-\zeta} d z=\int_{0}^{2 \pi} \frac{i \delta e^{i t}}{\delta e^{i t}} d t=2 \pi i
$$

but $\oint_{\Gamma_{1}}(z-\zeta)^{-k} d z=0$ for $k \in \mathbb{Z} \backslash\{1\}$.

5 Let T be an $N \times N$ matrix. The resolvent $R_{T}(z):=\left(T-z I_{N}\right)^{-1}$ is well defined except at the eigenvalues of T. If T is self-adjoint (for $\langle\cdot, \cdot\rangle_{\boldsymbol{\pi}}$) there exists an orthonormal basis w_{1}, \ldots, w_{N} with $T w_{j}=\mu_{j} w_{j}$. If
$W=\left(w_{1}, \ldots, w_{n}\right)$ then $W^{\top} \Pi W=I_{N}$ and $T W=W \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{N}\right)$ and \quad Note $W^{-1}=$ $W^{\top} \Pi$.

$$
\left(\mu_{1}-z\right) W^{-1} R_{T}(z) W=\operatorname{diag}(1,0, \ldots, 0)+\operatorname{diag}\left(0, \ldots \frac{\mu_{1}-z}{\mu_{j}-z}, \ldots\right)
$$

The j th diagonal element in the last matrix expands to

$$
-\sum_{k \geq 1}\left(\mu_{1}-z\right)^{k}\left(\mu_{1}-\mu_{j}\right)^{-k} \quad \text { for }\left|\mu_{1}-z\right|<\delta:=\min _{j \geq 2}\left|\mu_{1}-\mu_{j}\right|
$$

In matrix form,

$$
\left(\mu_{1}-z\right) R_{T}(z)=H_{1}-\sum_{k \geq 1}\left(\mu_{1}-z\right)^{k} S^{k}
$$

where $H_{1}=w_{1} w_{1}^{\top} \Pi$ is the matrix for orthogonal projection onto the subspace spanned by w_{1} and

$$
S:=W \operatorname{diag}\left(0,\left(\mu_{1}-\mu_{2}\right)^{-1}, \ldots,\left(\mu_{1}-\mu_{N}\right)^{-1}\right) W^{\top} \Pi
$$

is self-adjoint (for $\langle\cdot, \cdot\rangle_{\boldsymbol{\pi}}$) with $\|\mid S\|_{\pi} \leq 1 / \delta$. For the special case where T equals P we have $H_{1}=\mathbb{1} \pi^{\top}$. If $\Gamma(t)=1+\rho e^{i t}$ for $0 \leq t \leq 2 \pi$ and $\left|1-\mu_{1}\right|<\rho<\min _{j \geq 2}\left|1-\mu_{j}\right|$ then

$$
\frac{1}{2 \pi i} \oint_{\Gamma} R_{T}(z) d z=-H_{1} \quad \text { AND } \quad \frac{1}{2 \pi i} \oint_{\Gamma}(1-z) R_{T}(z) d z=\left(\mu_{1}-1\right) H_{1}
$$

Take the trace of the second equality to get a representation for $\mu_{1}-1$.
6 Think of the T_{θ} spectrum, $\lambda_{1}(\theta) \geq \lambda_{2}(\theta) \geq \cdots \geq \lambda_{N}(\theta)$, as a perturbation of the spectrum of P. If $\Gamma(t)=1+\rho e^{i t}$ for $0 \leq t \leq 2 \pi$ and θ is small enough that

$$
\left|1-\lambda_{1}(\theta)\right|<\rho<\min _{j \geq 2}\left|1-\lambda_{j}(\theta)\right|
$$

then, by trace trickery,
$\lambda_{1}(\theta)-1=\frac{1}{2 \pi i} \oint_{\Gamma}(1-z) \operatorname{trace}\left(T_{\theta}-z I_{N}\right)^{-1} d z=\frac{1}{2 \pi i} \oint_{\Gamma}(1-z) \operatorname{trace}\left(P_{\theta}-z I_{N}\right)^{-1} d z$
7 Write $R_{\theta}(z)$ for $\left(P_{\theta}-z I_{N}\right)^{-1}$ and abbreviate $R_{0}(z)$ to $R(z)$. Write $P_{\theta}(z)$ as $P+A_{\theta}(z)$ where $A_{\theta}=\sum_{k \geq 1} \theta^{k} P F^{k} / k!$. If $\left\|\left\|A_{\theta} R(z)\right\|_{\pi}<1\right.$ then

$$
R_{\theta}(z)=R(z)\left(I_{N}+A_{\theta} R(z)\right)^{-1}=R(z)+\sum_{q \geq 1}(-1)^{q} R(z)\left(A_{\theta} R(z)\right)^{q}
$$

