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1 From Part 1: Markov chain X0, X1, . . . on a finite state space V (of
size N), transition probabilities P (x, y). Assume irreducible, aperiodic and
time reversible: π(x)P (x, y) = π(y)P (y, x), with π the stationary
distribution. Inner product 〈f, g〉π =

∑
x∈V f(x)π(x)g(x). Time reversible

implies self-adjoint: 〈f, Pg〉π = 〈Pf, g〉π. Spectrum of P :

λ1 = 1 > λ2 = 1− γ ≥ · · · ≥ λN > −1.

2 Given f : V→ R with maxx∈V |f(x)| ≤ 1 and
∑

x∈V π(x)f(x) = 0 and∑
x∈V π(x)f(x)2 ≤ σ2. Seek concentration of tn(f) = f(X1) + · · ·+ f(Xn)

under Pπ. Claim:

Pπeθtn(f) ≤ const× exp

(
Wθ2

2(1−Bθ)

)
for 0 ≤ θ < 1/B

where W = Cnσ2/γ and B = 5/γ, leading to tail bound

Pπ{tn(f) ≥ r} ≤ const× exp

(
− γr2/2

Cnσ2 + 5r

)
for r ≥ 0.

3 Matrix notation.

π an N × 1 column vector; Π = diag(π) an N ×N matrix

P an N ×N matrix with πᵀP = πᵀ and P1 = 1

f an N × 1 column vector; F = diag(f) an N ×N matrix

Pθ = PeθF and Tθ = eθF/2PeθF/2

Note 〈g, h〉π = gᵀΠh and πᵀh = 1
ᵀΠh = 〈1, h〉π. Claim: e−θF/2 and Tθ are

self-adjoint and

Pπeθtn(f) = πᵀPeθF . . . P eθFPeθf = πᵀPnθ 1

= πᵀe−θF/2Tnθ e
θF/2

1

= 〈1, e−θF/2Tnθ eθf/2〉π = 〈e−θf/2, Tnθ eθf/2〉π
≤ ‖e−θf/2‖π |‖Tθ‖|nπ ‖eθf/2‖π where |‖·‖|π is operator norm

≤ eθλ1(θ)n where λ1(θ) is largest eigenvalue of Tθ.

The power could be reduced to n− 1 by a slightly trickier argument.

4 Part 2: Complex analysis facts. If ψ : G→ C is holomorphic on a convex,
open subset G of C and Γ is a closed path lying inside G
then

∮
Γ ψ(z) dz = 0.

As a consequence: If Γ1(t) = 1 + ρeit

ζ

Г1

Г2

1

and Γ2(t) = ζ + δeit for 0 ≤ t ≤ 2π with |ζ − 1| < ρ− δ then∮
Γ1

1

z − ζ
dz =

∮
Γ2

1

z − ζ
dz =

∫ 2π

0

iδeit

δeit
dt = 2πi

but
∮

Γ1
(z − ζ)−kdz = 0 for k ∈ Z\{1}.
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5 Let T be an N ×N matrix. The resolvent RT (z) := (T − zIN )−1 is well
defined except at the eigenvalues of T . If T is self-adjoint (for 〈·, ·〉π) there
exists an orthonormal basis w1, . . . , wN with Twj = µjwj . If
W = (w1, . . . , wn) then W ᵀΠW = IN and TW = Wdiag(µ1, . . . , µN ) and Note W−1 =

W ᵀΠ.

(µ1 − z)W−1RT (z)W = diag(1, 0, . . . , 0) + diag

(
0, . . .

µ1 − z
µj − z

, . . .

)
The jth diagonal element in the last matrix expands to

−
∑

k≥1
(µ1 − z)k(µ1 − µj)−k for |µ1 − z| < δ := minj≥2 |µ1 − µj |.

In matrix form,

(µ1 − z)RT (z) = H1 −
∑

k≥1
(µ1 − z)kSk

where H1 = w1w
ᵀ
1Π is the matrix for orthogonal projection onto the

subspace spanned by w1 and

S := Wdiag
(
0, (µ1 − µ2)−1, . . . , (µ1 − µN )−1

)
W ᵀΠ

is self-adjoint (for 〈·, ·〉π) with |‖S‖|π≤ 1/δ. For the special case where T
equals P we have H1 = 1πᵀ.
If Γ(t) = 1 + ρeit for 0 ≤ t ≤ 2π and |1− µ1| < ρ < minj≥2 |1− µj | then

1

2πi

∮
Γ
RT (z) dz = −H1 and

1

2πi

∮
Γ
(1− z)RT (z) dz = (µ1 − 1)H1

Take the trace of the second equality to get a representation for µ1 − 1.

6 Think of the Tθ spectrum, λ1(θ) ≥ λ2(θ) ≥ · · · ≥ λN (θ), as a perturbation
of the spectrum of P . If Γ(t) = 1 + ρeit for 0 ≤ t ≤ 2π and θ is small
enough that

|1− λ1(θ)| < ρ < minj≥2 |1− λj(θ)|

then, by trace trickery,

λ1(θ)−1 =
1

2πi

∮
Γ
(1−z)trace(Tθ−zIN )−1dz =

1

2πi

∮
Γ
(1−z)trace(Pθ−zIN )−1dz

7 Write Rθ(z) for (Pθ − zIN )−1 and abbreviate R0(z) to R(z). Write Pθ(z)
as P +Aθ(z) where Aθ =

∑
k≥1 θ

kPF k/k!. If |‖AθR(z)‖|π< 1 then

Rθ(z) = R(z) (IN +AθR(z))−1 = R(z) +
∑

q≥1
(−1)qR(z) (AθR(z))q .


