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A convexity result of Davis

Let H,, denote the set of all n x n Hermitian (self-adjoint) matrices.
Suppose f : H,, — R. The function f is said to be convex if

f(1=t)A+tB) < (1-t)f(A)+tf(B) forall 0 <t¢<1and A, B € H,.
The function is unitarily invariant if
fU*AU) = f(A) for each A € J,, and unitary U.
If A=UAU* with unitary U and A = diag(A1,...,Ay) then

FA) = F(A) = T(A,. . A,

We could also think of ¥ as a function defined for diagonal matrices with
real elements. That is,

T, ... An) = T(A).

The function ¥ must be symmetric in its arguments, because permuta-
tion matrices are unitary. If f is also convex then clearly ¥ must also be
convex as a function on R™: apply <1> to diagonal matrices A and B.

Davis (1957) proved that the implication also goes in the other direction.
That is, convexity of W for a unitarily invariant f implies convexity of f.

Remark. Actually Davis allowed f to take values in a partially ordered
real vector space. The proof is essentially the same as the proof for
real-valued f.

The proof starts from <1>, writing A for (1 —¢)A+¢B. We may assume
that the Hermitian matrix A is diagonal, diag(Ai,...,A,). The \;’s are
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the eigenvalues of A with corresponding eigenvalues eq, ..., e,, the usual or-
thonormal basis for C". (The proof also works with real symmetric matrices
and the {e;} interpreted as an onb for R".)

For any n x n matrix M write diag(M) for the n x n matrix with the
same diagonal entries as M but zeros in the off-diagonal elements.

The proof works by first showing that

U(diag(M)) := f(diag(M)) < f(M) for M € H,,.
From the equality

A = (1 —t)diag(A) + t diag(B)
we then get

f(A) =W [(1 —t)diag(A) + tdiag(B)]
< (1 —1t)¥(diag(A)) + t¥(diag(B)) by convexity of ¥
<(1—-1t)f(A)+tf(B) by <3>.

To establish <3>, suppose M has eigenvalues p; with corresponding
eigenvectors zj, for j =1,...,n. Write diag(M) as diag(m, ..., my), where

m; = <6’j,M€j>
= <€j’zk Li€j, 2k) 2k) because Me; = M >, (e, zi) 2k
= Zk 1iS;k where S = <ej,zk>2.

In vector form the equality becomes m = Su, where m = (mq,...,my,)
and p = (p1,...,4y) are both n x 1 vectors.
The key insight is that the n x n matrix S is doubly stochastic because

1:”6]'”222 e],zk Z Sjk

with a similar equality for zj Sj k. By an elegant result of Birkoff, S can
be written as a convex combination of permutation matrices,

S:ZG’VUPO'

That is, for each permutation o of [n],

’ 0 otherw1se
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Thus m =) 7o Py and

¥(m) < Za Vo U (Pop) = ¥(u),

the last equality because W is a symmetric function and P, merely permutes
the components of . That is,

f(diag(M)) < f(M),

as asserted by <3>.
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Birkhofl’s representation of
doubly stochastic matrices
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4 Proof of the Theorem 4
A Theorem

The discussion at http://mathoverflow.net/questions/43569/ and the
article at http://en.wikipedia.org/wiki/Birkhoff_polytope, suggest
the following result was not originally due to Birkhoff.

A square matrix D is said to be doubly stochastic if it has nonnegative
entries with all row and column sums equal to 1. A permutation matrix
has exactly one 1 in each row and each column. More precisely, an n X n

permutation matrix is specified by a permutation o of {1,2,...,n}:
. 1 ifj=o0(i)
P, li, j] = {
oli-J) 0 otherwise.

I will write things like P; 39 or P, when o is the permutation for which
o(1)=1,0(2) =3, and 0(3) = 2:

= o O

1 0
P1’372 = |0 1

0 0
The subscripts give the location of the 1’s in successive rows. In particular,
In = Pl 2,...m

ghiyenny
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§2 An Example 2

Theorem. FEvery doubly stochastic matriz can be written as a convex com-
bination of permutation matrices.

Geometrically, the set D,, of all n x n doubly stochastic matrices can be
identified with a compact, convex subset of R™. Tt is the convex polytope
defined by n? inequality constraints (D[i,j] > 0 for all (i,5)) and 2n linear
equalities. The extreme points of that polytope correspond to the n! possible
permutation matrices.

An Example

The following Example previews the main idea behind the proof of Theo-
rem <l1>.

Example. Here is one way to represent a doubly stochastic matrix as a
convex combination of permutation matrices. Suppose

6 2 .2 1 2 2
Dy= 13 5 2| =3+|3 0 2| =3P3+3D
.1 .3 6] 1 3 .1
(2 4 4] 2 .4 0
Di= |6 0 4| =P+ |2 0 4| =5%P12+ Do
.2 6 .2 2 2 2
15 2k 0

Dy= |13 0 23| =gPi3o+3Ds
s 13 1f3]

0 1 0
Dy= |l 0 1| =LiPy13+iPr31.
Uy 0 1)

Thus 10D =5P123+ 2312+ Piza+ Pai3+ P

At each step I looked for a permutation o; with D;[i, (7)) > 0, put §; =
min; D;[i, 0;(7)], then subtracted off 0Py, to leave a matrix R; whose rows
and columns all summed to 1 — §;. If 6; < 1 then R; = (1 — §;)Dj11,
where D1 was a new doubly stochastic matrix that contained at least one
more 0 than D;. If §; =1 then R; = 0 and we are done.
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§3 A Lemma 3

The calculations could also be written as

Dy =061Ps +(1—61)D1  with 6 =1/2
Dy =062Py, + (1= 02)Dy  with 6, = 4/10
Dy = 3Py, + (1 — 03)D3 with §3 =1/3
D3 =04Py, + (1 —04)Dy  with 4 =1/2
Dy=65P,, +0  with §5 = 1.

Actually it is not necessary to standardize the remainder at each stage,
Repeated substitution gives the representation of D as a convex combination
of permutation matrices.

A Lemma

The proof of Theorem <1> consists of repeated appeals to the following
Lemma, which formalizes the idea behind Example <2>.

Lemma. For each non-negative matriz D whose row- and column-sums all
equal the same strictly positive number there exists a permutation o for which
Dii,o(i)] >0 fori=1,...,n.

Proor Without loss of generality suppose the row and column sums all
equal 1, that is, D is doubly stochastic.

Write T for the index set {1,...,n} for both the rows and the columns
of the matrix D. For each i € T define C; = {j € T : DJ[i,j] > 0}. We
seek a permutation ¢ for which o(i) € C; for all i. The Marriage Lemma
(Pollard, 2001, Problem 10.5) states that this is possible iff

H# Ujer C; > #1 for each I C T.

For a given I write J for U;c;C;. We need to show that k := #I < /¢ :=
#J. Without loss of generality suppose I = {1,...,k} and J = {1,...,/¢}.
(Equivalently, permute rows and columns to bring I x J to the top left
corner.) Then D has the block form,

D Akxe O x (n—0)
- |B C
(n—k)xt (n—k)x(n—~0)

The block of zeros appears because D[i,j] =01if i € [ and j ¢ J := U;c1C;.
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Write sum(matriz) for the sum of all the elements of a matrix. Each of
the k rows of A sums to 1; each of the (n — ¢) columns of C' sums to 1; and
each of the n rows of D sums to 1. Thus

n = sum(D) > sum(A) + sum(C) =k + (n —¥),

which rearranges to ¢ > k.

Proof of the Theorem

Algorithm makeBirkhoff:
Input: An n x n doubly stochastic matrix D
Output: A representation of D as a convex combination of
permutation matrices 01 Py, + -+ - + 03Py,

begin

j<1 R+ D

while R # 0 do
find a permutation ¢; for which 6; := min R[i, 0;(i)] > 0
R+ R-— HjP,,j
j—g+1
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