
A convexity result of Davis

Let Hn denote the set of all n × n Hermitian (self-adjoint) matrices.
Suppose f : Hn → R. The function f is said to be convex if

<1> f((1−t)A+tB) ≤ (1−t)f(A)+tf(B) for all 0 ≤ t ≤ 1 and A,B ∈ Hn.

The function is unitarily invariant if

<2> f(U∗AU) = f(A) for each A ∈ Hn and unitary U .

If A = UΛU∗ with unitary U and Λ = diag(λ1, . . . , λn) then

f(A) = f(Λ) = Ψ(λ1, . . . , λn).

We could also think of Ψ as a function defined for diagonal matrices with
real elements. That is,

Ψ(λ1, . . . , λn) = Ψ(Λ).

The function Ψ must be symmetric in its arguments, because permuta-
tion matrices are unitary. If f is also convex then clearly Ψ must also be
convex as a function on Rn: apply <1> to diagonal matrices A and B.

Davis (1957) proved that the implication also goes in the other direction.
That is, convexity of Ψ for a unitarily invariant f implies convexity of f .

Remark. Actually Davis allowed f to take values in a partially ordered
real vector space. The proof is essentially the same as the proof for
real-valued f .

The proof starts from <1>, writing Λ for (1− t)A+ tB. We may assume
that the Hermitian matrix Λ is diagonal, diag(λ1, . . . , λn). The λj ’s are
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the eigenvalues of Λ with corresponding eigenvalues e1, . . . , en, the usual or-
thonormal basis for Cn. (The proof also works with real symmetric matrices
and the {ej} interpreted as an onb for Rn.)

For any n × n matrix M write diag(M) for the n × n matrix with the
same diagonal entries as M but zeros in the off-diagonal elements.

The proof works by first showing that

<3> Ψ(diag(M)) := f(diag(M)) ≤ f(M) for M ∈ Hn.

From the equality

Λ = (1− t) diag(A) + t diag(B)

we then get

f(Λ) = Ψ [(1− t)diag(A) + tdiag(B)]

≤ (1− t)Ψ(diag(A)) + tΨ(diag(B)) by convexity of Ψ

≤ (1− t)f(A) + tf(B) by <3>.

To establish <3>, suppose M has eigenvalues µj with corresponding
eigenvectors zj , for j = 1, . . . , n. Write diag(M) as diag(m1, . . . ,mn), where

mj = 〈ej ,Mej〉

= 〈ej ,
∑

k
µk〈ej , zk〉zk〉 because Mej = M

∑
k〈ej , zk〉zk

=
∑

k
µkSj,k where SJ,k := 〈ej , zk〉2.

In vector form the equality becomes m = Sµ, where m = (m1, . . . ,mn)
and µ = (µ1, . . . , µn) are both n× 1 vectors.

The key insight is that the n× n matrix S is doubly stochastic because

1 = ‖ej‖2 =
∑

k
〈ej , zk〉2 =

∑
k
Sj,k

with a similar equality for
∑

j Sj,k. By an elegant result of Birkoff, S can
be written as a convex combination of permutation matrices,

S =
∑

σ
γσPσ.

That is, for each permutation σ of [n],

Pσ[j, k] =
{

1 if j = σ(i)
0 otherwise.
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Thus m =
∑

σ γσPσµ and

Ψ(m) ≤
∑

σ
γσΨ(Pσµ) = Ψ(µ),

the last equality because Ψ is a symmetric function and Pσ merely permutes
the components of µ. That is,

f(diag(M)) ≤ f(M),

as asserted by <3>.
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1 A Theorem
S:statement

The discussion at http://mathoverflow.net/questions/43569/ and the
article at http://en.wikipedia.org/wiki/Birkhoff_polytope, suggest
the following result was not originally due to Birkhoff.

A square matrix D is said to be doubly stochastic if it has nonnegative
entries with all row and column sums equal to 1. A permutation matrix
has exactly one 1 in each row and each column. More precisely, an n × n
permutation matrix is specified by a permutation σ of {1, 2, . . . , n}:

Pσ[i, j] =
{

1 if j = σ(i)
0 otherwise.

I will write things like P1,3,2 or Pσ when σ is the permutation for which
σ(1) = 1, σ(2) = 3, and σ(3) = 2:

P1,3,2 =

1 0 0
0 0 1
0 1 0


The subscripts give the location of the 1’s in successive rows. In particular,
In = P1,2,...,n.
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§2 An Example 2

ds <1> Theorem. Every doubly stochastic matrix can be written as a convex com-
bination of permutation matrices.

Geometrically, the set Dn of all n×n doubly stochastic matrices can be
identified with a compact, convex subset of Rn2

. It is the convex polytope
defined by n2 inequality constraints (D[i, j] ≥ 0 for all (i, j)) and 2n linear
equalities. The extreme points of that polytope correspond to the n! possible
permutation matrices.

2 An Example
S:example

The following Example previews the main idea behind the proof of Theo-
rem <1>.

eg <2> Example. Here is one way to represent a doubly stochastic matrix as a
convex combination of permutation matrices. Suppose

D0 =

.6 .2 .2
.3 .5 .2
.1 .3 .6

 = 1
2I3 +

.1 .2 .2
.3 0 .2
.1 .3 .1

 = 1
2P1,2,3 + 1

2D1

D1 =

.2 .4 .4
.6 0 .4
.2 .6 .2

 = 4
10P3,1,2 +

.2 .4 0
.2 0 .4
.2 .2 .2

 = 4
10P3,1,2 + 6

10D2

D2 =

1/3 2/3 0
1/3 0 2/3
1/3 1/3 1/3

 = 1
3P1,3,2 + 2

3D3

D3 =

 0 1 0
1/2 0 1/2
1/2 0 1/2

 = 1
2P2,1,3 + 1

2P2,3,1.

Thus 10D = 5P1,2,3 + 2P3,1,2 + P1,3,2 + P2,1,3 + P2,3,1.
At each step I looked for a permutation σj with Dj [i, σj(i)] > 0, put δj =

miniDj [i, σj(i)], then subtracted off δjPσj to leave a matrix Rj whose rows
and columns all summed to 1 − δj . If δj < 1 then Rj = (1 − δj)Dj+1,
where Dj+1 was a new doubly stochastic matrix that contained at least one
more 0 than Dj . If δj = 1 then Rj = 0 and we are done.
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§3 A Lemma 3

The calculations could also be written as

D0 = δ1Pσ1 + (1− δ1)D1 with δ1 = 1/2

D1 = δ2Pσ2 + (1− δ2)D2 with δ2 = 4/10

D2 = δ3Pσ3 + (1− δ3)D3 with δ3 = 1/3

D3 = δ4Pσ4 + (1− δ4)D4 with δ4 = 1/2

D4 = δ5Pσ5 + 0 with δ5 = 1.

Actually it is not necessary to standardize the remainder at each stage,
Repeated substitution gives the representation of D as a convex combination
of permutation matrices.

�

3 A Lemma
S:lemma

The proof of Theorem <1> consists of repeated appeals to the following
Lemma, which formalizes the idea behind Example <2>.

diag <3> Lemma. For each non-negative matrix D whose row- and column-sums all
equal the same strictly positive number there exists a permutation σ for which
D[i, σ(i)] > 0 for i = 1, . . . , n.

Proof Without loss of generality suppose the row and column sums all
equal 1, that is, D is doubly stochastic.

Write T for the index set {1, . . . , n} for both the rows and the columns
of the matrix D. For each i ∈ T define Ci = {j ∈ T : D[i, j] > 0}. We
seek a permutation σ for which σ(i) ∈ Ci for all i. The Marriage Lemma
(Pollard, 2001, Problem 10.5) states that this is possible iff

# ∪i∈I Ci ≥ #I for each I ⊆ T .

For a given I write J for ∪i∈ICi. We need to show that k := #I ≤ ` :=
#J . Without loss of generality suppose I = {1, . . . , k} and J = {1, . . . , `}.
(Equivalently, permute rows and columns to bring I × J to the top left
corner.) Then D has the block form,

D =

[
Ak×` 0k×(n−`)

B(n−k)×` C(n−k)×(n−`)

]
The block of zeros appears because D[i, j] = 0 if i ∈ I and j /∈ J := ∪i∈ICi.
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§4 Proof of the Theorem 4

Write sum(matrix) for the sum of all the elements of a matrix. Each of
the k rows of A sums to 1; each of the (n− `) columns of C sums to 1; and
each of the n rows of D sums to 1. Thus

n = sum(D) ≥ sum(A) + sum(C) = k + (n− `),

which rearranges to ` ≥ k.

�

4 Proof of the Theorem
S:proof

Algorithm makeBirkhoff:

Input: An n× n doubly stochastic matrix D
Output: A representation of D as a convex combination of

permutation matrices θ1Pσ1 + · · ·+ θkPσk
begin

j ← 1; R← D
while R 6= 0 do

find a permutation σj for which θj := minR[i, σj(i)] > 0
R← R− θjPσj
j ← j + 1
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