

NANUQ[™]: Automated Ultra-Fast Cryocooling For Optimized Biomolecular Structure Characterization

Joyce Frank, Robert Thorne, David Closs, Richard Jayne, and Benjamin Apker MiTeGen, Ithaca, NY

Challenges: Biomolecular CryoCrystallography

- Cooling damages crystals, especially when ice forms.
- Ice forms in solvent inside and outside crystals.
- Ice accumulates in LN₂ and contaminates crystals.

NANUQ™: Automated Hyperquenching Cryocooler

Incredible Advantages

Dramatically reduce cryoprotectant needs:

Minimum CPA concentration (%v/v) to vitrify 100 μm drops in LN₂

- 20% of PDB deposited data sets and a much larger fraction of all data sets - show structure factor errors due to ice.
- High-value targets with large solvent contents (e.g., membrane proteins) and large solvent cavities (e.g., large complexes) are the most challenging to cool successfully.
- Cryoprotectants soaks reduce ice, but can damage or dissolve crystals.
- Cryoprotectants can displace or be mistaken for ligands and modify protein conformation.
- Cooling damage depends on cooling rate and cryoprotectant concentration.
- Cooling by hand plunging in LN₂ is highly irreproducible.
- Cooling rates are too small to kinetically capture the biological temperature structural ensemble.
- **Crystals** are **lost** during hand plunging and loading into pucks; a significant fraction of **loops** sent to synchrotrons have **no crystals**.
- Crystals often **dehydrate** during manual handling before plunging.

NANUQ™: Features and Patented Technology

Maximize cooling rates using LN₂:

- No penetrating cryoprotectants required to prevent internal ice. Only add for contraction matching.
- No cryo soaks necessary just quick swipes through a dilute cryo solution / oil to protect / remove external solvent
- No ligand displacement and no crystal damage or dissolving by cryoprotectants

Take control of every plunge:

High speed sample translation stage:

- Maximizes **cooling rates** using LN₂.
- Programmable sample plunge speeds from 2 m/s (for fastest cooling of small crystals) down to < 0.01 m/s (for optimized cooling of large crystals and for quasi-equilibrium cooling to explore, e.g., cold denaturation).
- Controlled decelerations prevent sample loss.

Automated, computer controlled operation:

 Time from crystal harvest to fully cryocooled < 2 seconds; time between samples < 5 seconds.

Plunge manifold:

- Controls plunge environment to remove or define cold gas layers above the LN₂ and provide a controlled temperature plunge path.
- Eliminates cold gas above LN₂ and waves on the LN₂ surface for the fastest cooling
- Can trap cold gas for variable rate cooling.
- Computer controlled dry gas flows, vacuum, and heaters eliminate frosting and minimize LN₂ consumption.

Cooling times < 2 ms better kinetic capture of room temperature structure & ligand binding configuration

- Highly reproducible cooling science-based optimization of soaks, cooling, and diffraction
- Improve diffraction quality and reduce mosaicity

Eliminate internal and external ice:

Sample: CA IX-mimic Crystal

Cryprotectant: none

Result: No ice rings

Hand plunged (LN2) Sample: CA IX-mimic Crystal Cryprotectant: 20% sucrose Result: Significant ice rings

• Prevents ice formation inside crystals

 Gas-layer management and plunge speed control gives controllable cooling rates, enabling new experiments in crystallography

Access the Technology:

NANUQ™ Facility - Open to Users

Bring your samples and cool them, or send them to us for cooling.
Send your solutions and trays and we will crystallize, cool, and ship.

High capacity LN₂ storage and precision level control:
High efficiency insulation and large LN₂ capacity.
Allows continuous operation in high-throughput applications without risk of frosting.

Automated Sample Puck Loading:

- Carousel holds 4 Uni-Pucks and 64 samples in LN₂
- Positions pucks in a programmable sequence to capture and organize samples for optimal synchrotron data collection.
- Easy access allows loaded pucks to be removed and transferred to a dry shipper or storage Dewar, and empty pucks to be loaded.
- All manual placement of cold samples is eliminated.

• **Prevents ice contamination** from frost in LN₂

• **Prevents ice** from **frosting** during puck loading

Make efficient use of lab and beam time:

- Get everyone in your lab using the same reliable protocols
- Harvest and cool 64 crystals / hour with complete confidence
- No dehydrated crystals because of delays between harvest and plunge
- Prevent lost crystals due to manual plunging / loading accidents
- **Prevent ice** from cooling, LN₂ or frosting during puck loading
- Easily **sequence and track** samples in pucks for optimized data collection.

• Available equipment: Torrey Pines vibration-free crystallization incubator, HC35 cryogenic refrigerator, manual plate set up equipment, V8 & V20 Carl Zeiss microscopes and imaging cameras.

